Studies of Collectors. XI.1) The Preparation of Cyclic Polyamine-Type **Surfactants and Application to Ion-Flotation Collectors**

Kimiho Yamada, Yoshifumi Koide,* Hiroshi Yamanokuchi, Masaki Ohmura, and Hideto Shosenji

Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami, Kumamoto 860 (Received April 3, 1989)

Inclusion-type surfactants bearing cyclic dioxopolyamine (R_ndoN₄, R_ndoN₅) or cyclic polyamine (R₁₂N₄, 2.4R-N₆, Ls6.8N₆) were prepared and then investigated as ion-flotation collectors. The surface tensions of the surfactant solutions were 30-40 dyn cm⁻¹. The molecular areas of the surfactants in the aqueous solutions, as calculated from the Gibbs adsorption isotherm, were discussed in connection with the structures of the R_rdoN₄ and its Cu²⁺ complex. Heavy metal ions were floated with R_ndoN₄ or R_ndoN₅. The highest floatabilities of Cu²⁺ and Ni²⁺ were in the pH range of 10—12, while that of Fe³⁺ was in the pH range of 6—10. Furthermore, similar characteristics of the metal floatabilities were obtained by using R₁₂N₄ and alkylated linear polyamine. The flotation using R_ndoN₄ or R_ndoN₅ was done by the complex formation, but that using R₁₂N₄ or 2.4R-N₆ was done by the neutralization of the complex with OH $^-$. The selectivities in pH 4-8 were Cu $^{2+}$ >Ni $^{2+}$ >Fe $^{3+}$ >Zn $^{2+}$ when $\hat{R}_n doN_4$ was used and $Fe^{3+} > Cu^{2+} > Ni^{2+} > Zn^{2+}$ when $R_n doN_5$ was used.

Inclusion compounds, such as cyclodextrin²⁾ and crown ether, have recently been reported as new functional materials.3) These compounds form stable complexes, and the complex formations are highly selective. Some amphiphilic crown ethers have been prepared, and their alkali metal complexes have been examined as phase-transfer catalysts.4)

Moreover, specific chelating surfactants have been applied to ion-flotation collectors.⁵⁾ High selectivity is usually a matter of great importance in ion-flotation. Therefore, the inclusion compounds capable of capturing such heavy metal ions as cyclic polyamine, particularly the dianion-type ligand of cyclic dioxopolyamine, which forms an uncharged complex with Cu²⁺ and Ni²⁺,6 are very attractive. The capturing ability becomes more effective upon the introduction of a long alkyl group, because the ligand is densely adsorbed at the gas-liquid interface of the bubble; thus, the heavy metal ions must be highly concentrated on the ligand-condensed foams. In this study, the long-alkyl-substituted cyclic dioxopolyamines and cyclic polyamines are prepared, and their surface activities and their characteristics as ion-flotation collectors are investigated.

N-Alkylethylenediamine and N-dodecyldiethylenetriamine have previously been used as ion-flotation collectors.⁷⁾ However, ion-flotation collectors of cyclic polyamine-type surfactants have not yet been investigated, except for 1,4,8,11-tetraazacyclotetradecane, used as a carrier in the transportation.6,8)

Experimental

Materials. Long-alkyl-substituted cyclic dioxopolyamines were prepared by reference to the method described in the literature.9) The condensation of dimethyl alkylmalonate¹⁰⁾ with 3,7-diazanonane-1,9-diamine¹¹⁾ gave the cyclic dioxohexamine derivatives (R₁₂doN₄, R₁₈doN₄), while the condensation with 3,6,10-triazaundecane-1,11-diamine

gave the cyclic dioxopentamine derivatives (R₁₂doN₅, R₁₈-The preparation of the cyclic dioxohexamine bearing a dodecyl group, R₁₂doN₄, was done as follows: 0.1 mol of 3,7-diazanonane-1,9-diamine and 0.1 mol of dimethyl dodecylmalonate were dissolved in 100 cm3 of methanol, after which the mixture was refluxed for 5 d. The resulting white precipitates, R₁₂doN₄, was purified by recrystallization from acetone. Yield, 30%. R₁₈doN₄ and R_ndoN₅ were prepared by a similar procedure; the R₁₂doN₅ and R₁₈doN₅ were deposited out by adding hydrochloric acid, and then the precipitate was recrystallized from 50% methanol. Yields: R₁₈doN₄, 28%; R₁₂doN₅, 25%; R₁₈doN₅. Their structures were confirmed by the IR spectra (Shimadzu IR-408), the ¹H NMR spectra (JEOL JMN-MH-100), and elementary analyses (Yanako CHN Corder MT-3). Mp: R_{12} do N_4 85—88 °C, R_{18} do N_4 99—102 °C, R_{12} do- $N_5 \cdot 3HCl \ 184-188 \,^{\circ}C, \ R_{18}doN_5 \cdot 3HCl \ 235-240 \,^{\circ}C.$ (KBr): ν_{NH} 3300, ν_{CH} 2900, ν_{CO} 1650, δ_{NH} 1540, δ_{CH} 1460 cm⁻¹. ¹H NMR: R_n doN₄ in CDCl₃ δ =0.9 (3H, t, CH₃-CC-), 1.3 (methylene in alkane), 1.8 (4H, -CCH₂C-, -CCH₂C<), 2.7 (8H, -CCH₂NCH₂C-), 3.2—3.4 {5H, -CO-CH(C-)CO-, -CONCH₂C-}; $R_n doN_5 \cdot 3HCl$ in $D_2O \delta = 0.8$ (3H, t, CH₃CC-), 1.3 (methylene in alkane), 1.8 (2H, -CCH₂C<), 3.0 {H, -COCH(C-)CO-}, 3.4 (4H, -CONCH₂-C-), 3.5—3.6 (12H, -CCH₂N⁺CH₂C-). R₁₂doN₄ Found: C, 63.89; H, 10.70; N, 13.15%; Calcd for C₂₂H₄₄O₂N₄·0.9H₂O: C, 63.89; H, 11.18; N, 13.54%. R₁₈doN₄ Found: C, 65.85; H, 11.32; N, 11.08%; Calcd for C₂₈H₅₆N₄O₂·1.7H₂O: C, 65.74; H, 11.71; N, 10.96%. R₁₂doN₅·3HCl Found: C, 50.82; H, 9.35; N, 12.28%; Calcd for C₂₃H₄₇O₂N₅·3HCl·0.5H₂O: C, 50.82; H, 9.45; N, 12.88%. R₁₈doN₅·3HCl Found: C, 56.13; H, 9.84; N, 11.04%; Calcd for C₂₉H₅₃N₅O₂·3HCl: C, 56.79; H, 9.22; N, 11.42%.

Cyclic tetramine bearing a dodecyl group, R₁₂N₄, was prepared from the R₁₂doN₄. The R₁₂doN₄ was reduced with a large excess of a reductant, B2H6, in refluxing tetrahydrofuran for 24 h. After the treatment with hydrochloric acid, the salts (R₁₂N₄·4HCl) were recrystallized from 80% methanol. Yield, 25%. $R_{12}N_4 \cdot 4HCl$ Mp: 218—221 °C. IR (KBr): $\nu_{\rm NH}$ 3300, $\nu_{\rm CH}$ 2900, $\delta_{\rm NH}$ 1610, $\delta_{\rm CH}$ 1450, $\nu_{\rm CN}$ 1050—1030 cm⁻¹. ¹H NMR (CF₃COOH): δ =0.9 (3H, t, CH₃CC-), 1.3—1.9 (methylene and methylidyne in alkane), 3.6-3.9 (16H, $-CCH_2N^+CH_2C^-$). $R_{12}N_4$ Found: C, 51.54; H, 9.86; N, 10.11%; Calcd for $C_{22}H_{48}N_4 \cdot 4HCl$: C, 51.32; H, 10.20; N, 10.89%.

Cyclic hexamine, [18]aneN₆, was prepared according to the procedure described in the literature.^{12,13)} [18]aneN₆ Found: C, 28.55; H, 7.61; N, 16.44%; Calcd for $C_{12}H_{30}$ -N₆·6HCl·1.5H₂O: C, 28.55; H, 7.80; N, 16.64%. The [18]aneN₆ bearing 2.4 mol of the dodecanoyl groups, 2.4R-N₆, was obtained by the treatment of [18]aneN₆ with a 2.8-fold mol portion of dodecanoyl chloride. The number of the side chain was determined by the ratios based on the ¹H NMR spectra and the elementary analyses. ¹H NMR (CDCl₃): δ =0.9 (3H, t, CH₃CC-), 1.2 (methylene in alkane), 2.7—3.4 (24H, -NCH₂CH₂N-). 2.4R-N₆ Found: C, 67.57; H, 11.31; N, 11.44%; Calcd for C_{40.8}H_{82.8}N₆O_{2.47}·0.8HCl: C, 67.58; H, 11.62; N, 11.59%.

A telomer bearing 6.8 mol of [18]aneN₆, Ls6.8N₆, was derived from an acrylic acid-type telomer (LsnAc). The LsnAc was prepared by the radical telomerization of acrylic acid by a procedure similar to that described previously;14) it was refined by reprecipitations with hexane after having been dissolved in ether, after which the insoluble telomer in the ether was filtered off. The conditions of telomerization are shown in Table 1. The molar ratios of 1-dodecanethiol to acrylic acid (β) are correlated to the polymerization degrees (Pn), because the chain transfer of the growing radical to 1-dodecanethiol is affected by the β . The Pn of the telomers were: $Pn^{-1}=0.71\times\beta-0.018$ (insoluble in ether); $Pn^{-1}=0.71\times\beta+0.090$ (soluble in ether). The structures of the telomers were determined by IR, 1H NMR, and elementary analyses. An example (Ls8.5Ac) is as follows; IR (KBr): ν_{CH} 2900, ν_{CO} 1700 cm⁻¹; ¹H NMR{DCON(CD₃)₂}: δ=0.9 (3H, t, CH₃CC-), 1.3 (methylene in alkane), 10 (8.5H, -COOH); Ls8.5Ac Found: C, 54.9; H, 7.58%; Calcd for C₁₂H₂₅S(CH₂CHCOOH)_{8.5}H: C, 55.26; H, 7.43%. Then, the carboxyl groups of Ls8.5Ac were converted into chloroformyl groups by treatment with an excess of thionyl chloride. 15) The conversion was confirmed by IR (KBr) and ¹H NMR spectroscopy. The ν_{CO} frequencies, based on the carboxyl group (1700 cm⁻¹), were shifted to high $\nu_{\rm CO}$

frequencies based on the chloroformyl group (1750-1800 cm⁻¹), and the proton signal of the carboxyl group (δ =10) disappeared. The telomer bearing 8.5 mol of chloroformyl groups was treated with an amount of [18]aneN6 equimolar to the unit chloroformyl group in a refluxing toluene solution. After the toluene has been evaporated, the residue was washed with cold water and then acetone. The structure of the telomer bearing 6.8 mol of [18]aneN₆, Ls6.8N₆1.7Ac, was confirmed by IR, ¹H NMR, and elementary analyses. IR (KBr): $\nu_{\rm CO}$ 1630 cm⁻¹; ¹H NMR(D₂O): δ =0.9 (3H, t, CH₃CC-), 1.2 (methylene in alkane), 3.8 (methylene in [18]aneN₆), the ratio of [18]aneN₆ to the dodecyl group, as determined by the peak areas, was 6.8; Ls6.8N₆1.7Ac Found N/C ratio(%/%)=0.42: Calcd for $C_{12}H_{25}S(CH_{2}CHCOC_{12}H_{29}N_{6})_{6.8}(CH_{2}CHCOOH)_{1.7}H\cdot 5HCl$ N/C(%/%)=0.40.

The abbreviations of these cyclic polyamine-type surfactants are shown in Fig. 1.

$$c_{n}H_{2n+1}$$
 $c_{12}H_{25}$
 $c_{13}H_{25}$
 $c_{12}H_{25}$
 $c_{13}H_{25}$
 $c_{13}H_{25}$
 $c_{14}H_{25}$
 $c_{15}H_{25}$
 $c_{$

Fig. 1. The structures and the abbreviations.

Table 1. Preparation of the Telomer, LsnAc

	Condi	tions of reaction ^{a)}				
	LSH	β	Abbreviation		Yield	Pn
	mol	mol mol ⁻¹			wt%	
1	0.02	0.05	{Insol Sol	Ls23.6Ac Ls8.5Ac	65.2 13.9	23.6 8.5
2	0.04	0.10	{Insol Sol	Ls16.3Ac Ls5.5Ac	46.2 7.0	16.3 5.5
3	0.06	0.15	{Insol Sol	Ls13.9Ac Ls5.9Ac	19.0 10.0	13.9 5.9
4	0.08	0.20	{Insol Sol	Ls14.3Ac Ls3.8Ac	29.5 11.8	14.3 3.8
5	0.12	0.30	Sol	Ls3.2Ac	16.7	3.2

a) Acrylic acid, 0.4 mol; LSH: 1-Dodecanethiol, β =LSH/(acrylic acid); 2,2'-azobisisobutyronitrile, 0.289 g; ethanol, 300 cm³. Temp: 78 °C, time: 3 h. b) Sol: Telomer soluble in ether, Insol: telomer insoluble in ether. *Pn*: Polymerization degree.

Apparatus and Procedures. The flotation apparatus was the same as that previously reported.⁵⁾ The cyclic polyamine-type surfactant was added to 500 cm³ of a metal solution (Cu²⁺, Ni²⁺, Fe³⁺, Zn²⁺, Hg²⁺) in a flotation vessel, and then air was introduced into the solution through a sintered-glass disk (No. 4) at the bottom of the vessel at the rate of 30—40 cm³ min⁻¹ for 20 min. The floatabilities of the metal ions were calculated using the following formula:

$$F(\%) = \frac{a_0 - a_1}{a_0} \times 100$$

where a_0 and a_1 denote the initial and final metal concentrations respectively.

Results and Discussion

Surface Activities of R_ndoN₄. The synthesized

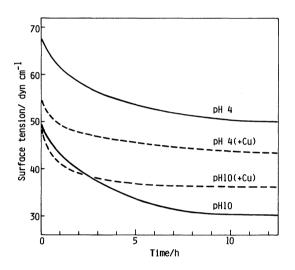


Fig. 2. Surface tension curves of $R_{12}doN_4$ at $20^{\circ}C$. Conc. at pH 4: $[R_{12}doN_4]=4.8\times10^{-5}$ mol dm⁻³, $[R_{12}doN_4]+[Cu^2+]=(4.7+4.7)\times10^{-5}$ mol dm⁻³. Conc. at pH 10: $[R_{12}doN_4]=6.3\times10^{-5}$ mol dm⁻³, $[R_{12}doN_4]+[Cu^2+]=(4.8+4.8)\times10^{-5}$ mol dm⁻³.

compounds bear a hydrophobic long alkyl group and a hydrophilic polyamine residue, so the surface activities were investigated. The surface tension of the R₁₂doN₄ solution, as measured by a Wilhelmy (Shimadzu ST-1) surface tension balance, is shown in Fig. 2 (1 dyn=1×10⁻⁵ N). The lowering of the surface tension was more at pH 10 or in the presence of Cu²⁺, as compared with that at pH 4. The lowering ceased in about 10 h, and the value become nearly constant. Therefore, the following measurements were carried out until the surface tension became constant (longer than 10 h).

The relations between the surface tension and the concentration of R₁doN₄ are shown in Fig. 3. R₁₂doN₄ at pH 10 had an excellent ability to lower the surface tension. The critical micellar concentration (cmc) was 1×10^{-4} M (1 M=1 mol dm⁻³); this was confirmed also by the conductometric titration. However, the cmc at pH 4 was not observed in concentrations below 3.8×10^{-4} M. The R₁₂doN₄ in the presence of Cu²⁺ had an excellent lowering ability, and the surface tensions at pH 4 and 10 were nearly the same in value. R₁₈doN₄ was soluble in a solution acidic enough for its surface tension to be measured, but not at pH 10. addition of Cu2+ to the R₁₈doN₄ solution made the surface tension lower, even at pH 10, and the two surface-tension curves at pH 4 and 10 became nearly the same.

The $R_{12}doN_4-Ni^{2+}$ complex had as much lowering ability as the Cu^{2+} complex. However, the Fe^{3+} complex at pH 10 was deposited, and the surface tension was not lowered so much $\{[R_{12}doN_4]+[Fe^{3+}]=(4.7+4.7)\times10^{-5} \text{ M}: 42 \text{ dyn cm}^{-1}, \text{ which is not shown in the figure}\}$. The formation of the Cu^{2+} and Ni^{2+} complexes was confirmed over the pH range of 4.5—10, 16 but that of the Fe^{3+} complex has not yet been confirmed. The Fe^{3+} complex would be less stable and

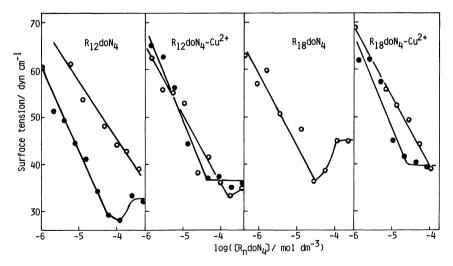


Fig. 3. Relations between surface tension and concn of R_ndoN₄. [R_ndoN₄]=[Cu²⁺], temp: 20°C. O: pH 4,
●: pH 10.

Table 2. Surface Activities of R_ndoN₄ and R_ndoN₄-Cu²⁺ Complexes^{a)}

	pH 4			pH 10		
	γ _{cmc} dyn cm ⁻¹	cmc ×10 ⁻⁴ M	S Ų mol⁻¹	γ _{cmc} dyn cm ⁻¹	cmc ──×10 ⁻⁴ M	S Å ² mol ⁻¹
R ₁₂ doN ₄	< 39	3.8<	82	32	1	57
$R_{12}doN_4+Cu^{2+}$	35	2	66	36	0.5	46
$R_{18}doN_4$	45	0.3	77		Insoluble	
$R_{18}doN_4+Cu^{2+}$	<39	1.3<	67	40	0.3	48

a) Wilhelmy surface-tension balance; temp: 20°C.

so would be hydrolyzed easily, or the R₁₂doN₄ might bind to the Fe3+ hydroxide.

The surface-tension curves of hydrophilic R_ndoN₅ were located in higher concentrations than the curves The relations of the surface tension of R_ndoN₄. between the R₁₂doN₅, the R₁₈doN₅, and their Cu²⁺ complexes were similar to those between the corresponding R₁₂doN₄, R₁₈doN₄, and their Cu²⁺ complexes.

Molecular Area. The surfactants (RndoN4 and its Cu²⁺ complex) are oriented on the surface layer of the solutions. Therefore, the mole numbers of the vertical surfactants(Γ) per unit area (cm²) were calculated from the Gibbs adsorption isotherm on the basis of the lowering of the surface tension(γ):¹⁷⁾

$$\Gamma = \frac{1}{RT} \times \frac{\mathrm{d} \, \gamma}{\mathrm{d} \, \ln C}$$

Then, the areas of the cross-section of a surfactant molecule were calculated from the mole number. The areas (S) are shown in Table 2, together with their surface activities. The S values when soluble in water lead to a small error. However, it is reasonable to estimate the relative areas in connection with the structures of the R_ndoN₄ and its Cu²⁺ complex.

The areas of R₁₂doN₄ were 82 Å² mol⁻¹ at pH 4 and 57 Å² mol⁻¹ at pH 10; that of R_{18} do N_4 was 77 Å² mol⁻¹ at pH 4, but has unmeasured at pH 10. The R₁₂doN₄ and R₁₈doN₄ in the acidic solution of pH 4 are Therefore, the area of R₁₂doN₄ at pH 4 would be widened because of the solvation and the electrostatic repulsion, while the area of R₁₈doN₄ at pH 4 would become narrower than that of R₁₂doN₄ at pH 4 because of the additional aggregation based on the van der Waals force of a longer alkyl chain.

The area of R_n do N_4 in the presence of Cu^{2+} became smaller than that in the absence of Cu²⁺. R₁₂doN₄-Cu²⁺ and R₁₈doN₄-Cu²⁺ complexes had nearly the same S values, and the two areas at pH 10 (46-48 Å² mol⁻¹) were smaller than those at pH 4 (66-67 Å² mol⁻¹). Dioxo[14]aneN₄ is known to form the uncharged Cu²⁺ complex above pH 4.5.16) Therefore, the R_ndoN₄ at pH 10 would form the uncharged Cu²⁺ complex with a tighter aggregation.

Thus, it was proved that the long-alkyl-substituted

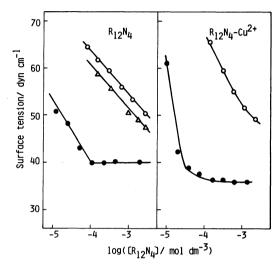


Fig. 4. Surface tension of $R_{12}N_4$. $[R_{12}N_4]=[Cu^{2+}]$, temp: 20°C. O: pH 4, ∆: pH 7, ●: pH 10.

cyclic dioxopolyamine and its metal complexes have the ability to lower the surface tension.

Surface Activities of R₁₂N₄. The reduction product of R₁₂doN₄, R₁₂N₄, also made the surface tension lower. The surface tension, as measured by Du Noüy surface-tension balance, is shown in Fig. 4. At pH 4 and 7, the surface tension lowered with the increase in the concentration, and the cmc was not observed over the concentration range below 3×10⁻³ M. The surface tension at pH 10 fell to 40 dyn cm⁻¹, and the cmc was nearly 10⁻⁴ M. The addition of Cu²⁺ lowered the surface tension a little, and the cmc at pH 10 shifted to a lower concentration. The calculated S values of $R_{12}N_4$ were 95 Ų mol $^{-1}$ at pH 4 and 66 Ų mol $^{-1}$ at pH 10, while those of the Cu²⁺ complex were 48— $53 \text{ Å}^2 \text{ mol}^{-1}$ at pH 4 and $39 \text{ Å}^2 \text{ mol}^{-1}$ at pH 10. The 2.4R-N₆ and Ls6.8N₆ showed a lowering of the surface tension (2.4R-N₆ 34—37 dyn cm⁻¹, Ls6.8N₆ 42 dyn cm⁻¹); their Cu²⁺ complexes had a similar surface tension. The S values at pH 7 were 72 Å² mol⁻¹ for $2.4R-N_6$ and $42 \, \text{Å}^2 \, \text{mol}^{-1}$ for the Cu²⁺ complex. The differences in the areas are probably caused by the tightness of the aggregation based on the complex formation. However, the S values of Ls6.8N6 and its Cu²⁺ complex were both 92 Å² mol⁻¹ at pH 7. The same wide areas are probably caused by the weak

aggregation based on the similar great repulsion of the 1.7 mol of carboxylate ion in Ls6.8N₆ and its Cu²⁺ complex.

Ion-Flotation. The four metal ions (Cu²⁺, Ni²⁺, Fe³⁺, Zn²⁺) in water were separated by the method of ion-flotation using these surfactants. R₁₂doN₄ and R₁₈doN₄ showed almost the same floatabilities of the metal ions, as is shown in Fig. 5. The dioxo[14]aneN₄metal complexes when the equimolar dioxo[14]aneN4 was added to the 10-4 M of the metal ion were calculated from the data of the stability constants. 18) The 1:1 species were in the pH range above 4.6 for Cu²⁺ and above 7 for Ni²⁺. Therefore, the alkylated R_ndoN₄ would complex and float with Cu²⁺ or Ni²⁺ in that pH region. R_ndoN₅ exhibited slightly different floatabilities from those obtained by using R_ndoN₄, e.g., Fe³⁺ in pH 5-6 (Fig. 6). R_ndoN₅ is more hydrophilic than R_ndoN₄, so that the differences in the floatabilities are caused by their HLB.

The collector characteristics of the alkylated reduction product $(R_{12}N_4)$ and the polyalkylated 2.4R-N₆

([18]aneN₆ bearing 2.4 mol of dodecyl groups) are shown in Fig. 7. The stability constants (log K) of the cyclic polyamine–Cu²⁺ complexes are known to be far greater than those of the cyclic dioxopolyamine–Cu²⁺ complexes.^{18,19)} The p k_a and log $K(Cu^{2+}$ complex) have been reported as follows: dioxo[14]aneN₄ p k_{a1} 5.97, p k_{a2} 9.57, log K 1.0; dioxo[16]aneN₅ p k_{a1} <2, p k_{a2} 8.69, p k_{a3} 9.01;¹⁸⁾ [14]aneN₄ p k_{a1} 0.9, p k_{a2} 1.61, p k_{a3} 10.62, p k_{a4} 11.59, log K 27.2; [18]aneN₆ p k_{a1} ca. 1, p k_{a2} ca. 2, p k_{a3} 4.30, p k_{a4} 9.01, p k_{a5} 9.51, p k_{a6} 10.46, log K 21.6.¹⁹⁾

Then, the stabilities of the $R_{12}\text{doN}_4$ – Cu^{2+} and $R_{12}\text{N}_4$ – Cu^{2+} complexes were confirmed by pH titration with a NaOH solution. The titration curves of the $R_{12}\text{doN}_4$ and $R_{12}\text{N}_4$ showed the end points based on the acid dissociation (p k_a) at two and four equimolar quantities of NaOH respectively. From the two pH-titration curves in the presence of Cu^{2+} , it was concluded that the Cu^{2+} complex of $R_{12}\text{N}_4$ is far more stable than the complex of $R_{12}\text{doN}_4$, while the $R_{12}\text{doN}_4$ forms uncharged complexes with divalent Cu^{2+} .

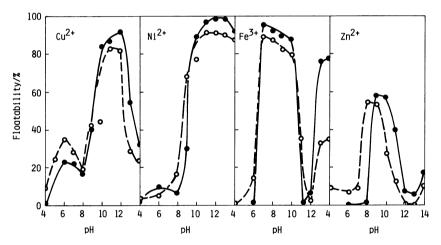


Fig. 5. Flotation by using $R_n doN_4$. [Metal ion], $[R_n doN_4] = 10^{-4} \text{ mol dm}^{-3}$. O: $R_{12} doN_4$, \blacksquare : $R_{18} doN_4$.

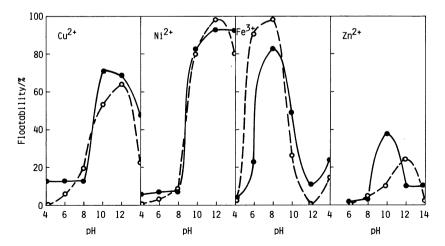


Fig. 6. Flotation by using $R_n doN_5$. [Metal ion], $[R_n doN_5] = 10^{-4} \text{ mol dm}^{-3}$. O: $R_{12} doN_5$. \blacksquare : $R_{18} doN_5$.

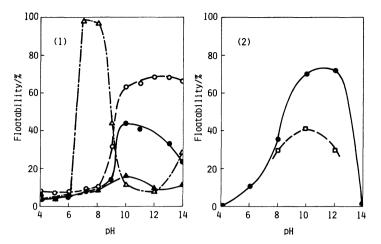


Fig. 7. Flotation by using $R_{12}N_4$ and $2.4R-N_6$. (1): [Metal ion], $[R_{12}N_4]=10^{-4}$ mol dm⁻³. (2): [Metal ion], $[2.4R-N_6]=3\times10^{-5}$ mol dm⁻³. \bullet : Cu²⁺, O: Ni²⁺, Δ : Fe³⁺, Δ : Zn²⁺, \square : Hg²⁺.

Therefore, the pk_a values of R_n doN₄, R_n doN₅, R_{12} N₄, and 2.4R-N₆, and the log K values of their metal complexes, are comparable to those of the corresponding cyclic dioxopolyamine, cyclic polyamine, and the metal complexes.

However, neither Cu^{2+} nor the other metal ions was floated so highly by using $R_{12}N_4$, and the floatability of Cu^{2+} by using 2.4R-N₆ in the alkaline region was similar to that when $R_n doN_4$ or $R_n doN_5$ was used. The floatable $R_{12}N_4$ -metal and 2.4R-N₆-metal complexes in that alkaline region are the neutralized species with OH⁻. The telomer bearing 6.8 mol of [18]aneN₆, Ls6.8N₆, formed soluble metal complexes and did not make the metal ions float.

Thus, the variation in the complex forms, that is, the variation in their HLB values, fairly affected the floatabilities. The floated complexes were surface-active. The HLB values were calculated according to the Oda equation²⁰⁾ on the basis of the postulated structures. The HLB values were $R_{12}\text{doN}_4$ –Cu 9, $R_{12}\text{doN}_5$ –Cu 10, and $(R_{12}N_4$ –Cu)²⁺·2(OH)⁻ 14. The values of the complexes proved to be in the HLB range of 4—14 suitable for ion flotation, as has been reported previously.²¹⁾ Therefore, they must be floated.

Flotation Using Polyamine. N-Alkylethylenediamine and N-dodecyldiethylenetriamine have been placed in an ion-flotation collector. The complexation of the cyclic polyamine differs much from that of the linear polyamine. Therefore, the collector characteristics of the alkylated cyclic polyamines were compared with those of the linear polyamine-type surfactants. The flotation of Cu²⁺ is shown in Fig. 8.7.22) All the floatabilities were roughly similar, in spite of the great differences in the stability constants. The Cu²⁺ complexes of linear polyamines should be neutralized with OH⁻ in the alkaline region, and then the complexes come to be in the HLB range of 4—14.

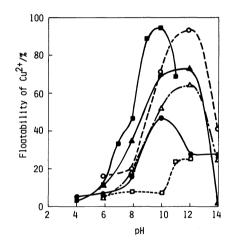


Fig. 8. Flotation of Cu²⁺ by using polyamine-type surfactants. O: R₁₂doN₄, Δ: R₁₂doN₅, ●: R₁₂N₄, Δ: 2.4R-N₆, □: N-dodecylethylenediamine, ■: N-dodecyldiethylenetriamine.

Therefore, the complexes should be floated in the alkaline region, and all the collector characteristics will resemble each other.

Selectivity. The selectivity of metal ions is a matter of great practical importance in separation. Therefore, the selective flotation from a metal-ion mixture (Fe³+, Cu²+, Ni²+, Zn²+) was examined. The flotations by using R¹8doN₄ and R¹8doN₅ in pH 4—8 are shown in Fig. 9. The selectivities by using R¹8doN₄ or R¹2doN₄ were Cu²+>Ni²+>Fe³+>Zn²+; this order differed from that by using R¹8doN₅ or R¹2doN₅ (Fe³+>Cu²+>Ni²+>Zn²+). The coordination numbers of Cu²+ and Fe³+ are usually 4 and 6 respectively. Therefore, it was considered that the RⁿdoN₄-Cu²+ complex was saturated, while the RⁿdoN₅-Cu²+, R¹8doN₄-Fe³+, and R¹8doN₅-Fe³+ complexes (or compounds) were not. The unsaturated R¹8doN₅-Cu²+

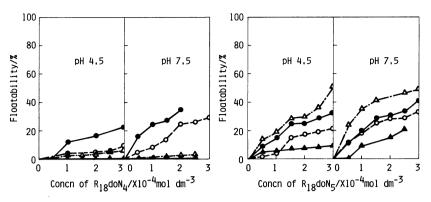


Fig. 9. Selectivities using R₁₈doN_x at pH 4.5 and 7.5.
 Metal ions mixture: Cu²⁺, Ni²⁺, Fe³⁺, Zn²⁺ (each 10⁻⁴ mol dm⁻³). ●: Cu²⁺, O: Ni²⁺, Δ: Fe³⁺, ▲: Zn²⁺.

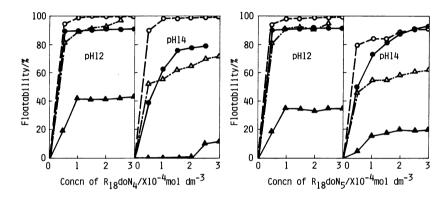


Fig. 10. Selectivities using $R_{18}\text{doN}_x$ in alkaline. Metal ions mixture: Cu^{2+} , Ni^{2+} , Fe^{3+} , Zn^{2+} (each $10^{-4} \text{ mol dm}^{-3}$). \bullet : Cu^{2+} , O: Ni^{2+} , Δ : Fe^{3+} , Δ : Zn^{2+} .

complex is more hydrophilic than the saturated R₁₈doN₄-Cu²⁺ complex, because of its one more amine. Moreover, the unsaturated Fe³⁺ complexes are cationic and are hydrolyzed easily above pH 3—4. The cationic R₁₈doN₄ and R₁₈doN₅ might bind to the colloidal Fe^{3+} hydroxide. Therefore, the $R_{18}doN_{4-}$ Cu²⁺ complex would be more hydrophobic than the R₁₈doN₄-Fe³⁺ compound. This tendency agreed with the hydrophobic properties in the surface tension; that is, the lowering of the surface tension of the hydrophobic $R_{12}doN_4$ -Cu²⁺ complex at pH 4 (Fig. 3) began at a lower concentration of R₁₂doN₄ than did that of the R₁₂doN₄-Fe³⁺ compound at pH 4 (the surface-tension curve, which is not shown, was nearly the same as the curve of the R₁₂doN₄ in the absence of Fe^{3+}). On the other hand, the $R_{18}doN_5$ - Fe^{3+} complex, the cyclic dioxopentamine compound, should be less hydrophilic than the Cu2+ complex. Therefore, the hydrophobic Cu2+ and Fe3+ complexes would be selectively floated by using R_ndoN₄ and R_ndoN₅ respectively. However, the same selectivities were observed in the pH range of 12—14, even though the floatabilities (Ni²⁺>Cu²⁺>Fe³⁺>Zn²⁺) were high, as is shown in Fig. 10. Metal ions form polyhydroxo

complexes in a strongly alkaline solution. The $\log K$ values of the metal-hydroxo complexes are Ni²⁺ 3.08, Cu^{2+} 6.66, Fe^{3+} 11.17, and Zn^{2+} 5.04;²³⁾ the Ni^{2+} hydroxide is the least stable among these metal ions. Therefore, the conditional stability constants of the $R_{18}doN_4-Ni^{2+}$ and the $R_{18}doN_5-Ni^{2+}$ complexes in the pH range of 12-14 would become the largest, and then Ni²⁺ would be floated most. Figures 5 and 6 also illustrate that the hydrophobic properties (HLB) of the Cu2+ and Fe3+ complexes developed in the floatabilities at pH 5-6, while the stabilities of the Ni²⁺ complex developed in the floatabilities above pH 12. On the other hand, the Cu2+ was extracted and transported selectively by using R₁₆doN₄ from a mixture of Cu²⁺, Fe³⁺, Ni²⁺, and Zn²⁺ because of the formation of the most stable complex. 6) Therefore, the selectivities in the ion-flotaion markedly differed from those in the extraction and transportation.

Thus, it is concluded that the cyclic polyamine-type surfactants have excellent surface-activities and that the flotation using the cyclic dioxopolyamine-type surfactant was done by means of the complex formation, while that using the cyclic polyamine or linear polyamine was done by means of the neutralization of

the complex with OH⁻. Furthermore, the selective flotation has been proved to be attributable to the hydrophobic properties (smaller HLB) of the metal complexes in the HLB range of 4—14 rather than to the stability.

The authors are grateful to Assistant Professor Akinori Jyo for his useful suggestions and to Mr. Shunji Hayashi and Mr. Norihito Maehara for their help in the experiments.

References

- 1) Part X: Y. Koide, M. Uchino, H. Shosenji, and K. Yamada, *Bull. Chem. Soc. Jpn.*, submitted for publication.
 - 2) W. Takagi, Yukagaku, 37, 394 (1988).
- 3) E. Kimura, Yuki Gosei Kagaku Kyokai Shi, 44, 871 (1986).
- 4) S. Inokuma, D. Ito, W. Kobori, and T. Kuwamura, Yukagaku, 37, 668 (1988).
- 5) Y. Koide, M. Uchino, and K. Yamada, *Bull. Chem. Soc. Jpn.*, **60**, 3477 (1987).
- 6) E. Kimura, C. A. Dalimunte, A. Yamashita, and R. Machida, J. Chem. Soc., Chem. Commun., 1985, 1041.
- 7) K. Yamada, Y. Koide, F. Koga, K. Izumi, and A. Hongo, Nippon Kagaku Kaishi, 1977, 575.
- 8) E. Kimura, Y. Lin, R. Machida, and H. Zenda, J. Chem. Soc., Chem. Commun., 1986, 1020.

- 9) I. Tabushi, Y. Taniguchi, and H. Kato, *Tetrahedron Lett.*, 1977, 1049.
- 10) R. Adams and R. M. Kamm, Org. Synth., I, 250 (1941).
- 11) J. V. Alphen, Recl. Trav. Chim. Pays-Bas, 55, 835 (1936).
- 12) M. Micheloni, P. Paoletti, and A. Poggi, J. Chem. Soc., Dalton Trans., 1982, 61.
- 13) W. L. Smith, J. D. Ekstrand, and K. N. Raymound, J. Am. Chem. Soc., 100, 3539 (1978).
- 14) K. Yamada and Y. Koide, Yukagaku, 30, 2 (1981).
- 15) B. Helfevich and W. Schaefev, Org. Synth., I, 147 (1941).
- 16) L. Fabbrizzi, F. Forlini, A. Perotti, and B. Seghi, *Inorg. Chem.*, 23, 807 (1984).
- 17) T. Kondo, "Kaimenkagaku," Sankyo Shuppan, Tokyo (1968), p. 18.
- 18) E. Kimura, R. Machida, and M. Kodama, J. Am. Chem. Soc., 106, 5497 (1984).
- 19) M. Kodama, E. Kimura, and S. Yamaguchi, J. Chem. Soc., Dalton Trans., 1980, 2536.
- 20) R. Oda and K. Teramura, "Kaimen-kasseizai No Gosei To Sonooyo," Makishoten, Tokyo (1962), p. 501.
- 21) Y. Koide, K. Izumi, K. Okuzono, and K. Yamada, Nippon Kagaku Kaishi, 1980, 742.
- 22) G. Izumi, M. Sato, S. Shoji, and K. Oikawa, *Bull. Chem. Soc. Jpn.*, **49**, 1727 (1976).
- 23) R. M. Smith and A. E. Martell, "Critical Stability Constants," Vol. 4, Plenum Press (1976).